Weighted First-Order Logics over Semirings

نویسندگان

  • Eleni Mandrali
  • George Rahonis
چکیده

We consider a first-order logic, a linear temporal logic, star-free expressions and counter-free Büchi automata, with weights, over idempotent, zerodivisor free and totally commutative complete semirings. We show the expressive equivalence (of fragments) of these concepts, generalizing in the quantitative setup, the corresponding folklore result of formal language theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lukasiewicz Logic and Weighted Logics over MV-Semirings

We connect Lukasiewicz logic, a well-established many-valued logic, with weighted logics, recently introduced by Droste and Gastin. We use this connection to show that for formal series with coefficients in semirings derived from MValgebras, recognizability and definability in a fragment of second order Lukasiewicz logic coincide.

متن کامل

Characterizing weighted MSO for trees by branching transitive closure logics

We introduce the branching transitive closure operator on weighted monadic second-order logic formulas where the branching corresponds in a natural way to the branching inherent in trees. For arbitrary commutative semirings, we prove that weighted monadic second order logics on trees is equivalent to the definability by formulas which start with one of the following operators: (i) a branching t...

متن کامل

Weighted automata and weighted logics on innite words

We introduce weighted automata over in…nite words with Muller acceptance condition and we show that their behaviors coincide with the semantics of weighted restricted MSO-sentences. Furthermore, we establish an equivalence property of weighted Muller and weighted Büchi automata over certain semirings. Keywords: Weighted logics, Weighted Muller automata, In…nitary formal power series, Weighted B...

متن کامل

M . Droste and P . Gastin Weighted automata and weighted logics Research Report LSV - 05 - 13 July 2005

Weighted automata are used to describe quantitative properties in various areas such as probabilistic systems, image compression, speech-to-text processing. The behaviour of such an automaton is a mapping, called a formal power series, assigning to each word a weight in some semiring. We generalize Büchi’s and Elgot’s fundamental theorems to this quantitative setting. We introduce a weighted ve...

متن کامل

Weighted Automata and Weighted Logics on Infinite Words

We introduce weighted automata over infinite words with Muller acceptance condition and we show that their behaviors coincide with the semantics of weighted restricted MSOsentences. Furthermore, we establish an equivalence property of weighted Muller and weighted Büchi automata over certain semirings. DOI: 10.3103/S1066369X10010044

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta Cybern.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015